Secure Transmission and Self-Energy Recycling for Wireless-Powered Relay Systems with Partial Eavesdropper Channel State Information
نویسندگان
چکیده
This paper focuses on the secure transmission of wireless-powered relay systems with imperfect eavesdropper channel state information (ECSI). For efficient energy transfer and information relaying, a novel two-phase protocol is proposed, in which the relay operates in full-duplex (FD) mode to achieve simultaneous wireless power and information transmission. Compared with those existing protocols, the proposed design possesses two main advantages: 1) it fully exploits the available hardware resource (antenna element) of relay and can offer higher secrecy rate; 2) it enables self-energy recycling (S-ER) at relay, in which the loopback interference (LI) generated by FD operation is harvested and reused for information relaying. To maximize the worst-case secrecy rate (WCSR) through jointly designing the source and relay beamformers coupled with the power allocation ratio, an optimization problem is formulated. This formulated problem is proved to be non-convex and the challenge to solve it is how to concurrently solve out the beamformers and the power allocation ratio. To cope with this difficulty, an alternative approach is proposed by converting the original problem into three subproblems. By solving these subproblems iteratively, the closed form solutions of robust beamformers and power allocation ratio for the original problem are achieved. Simulations are done and results reveal that the proposed S-ER based secure transmission scheme outperforms the traditional time-switching based relaying (TSR) scheme at a maximum WCSR gain of 80%. Results also demonstrate that the WCSR performance of the scheme reusing idle antennas for information reception is much better than that of schemes exploiting only one receive antenna.
منابع مشابه
The Wiretapped Diamond-Relay Channel
In this paper, we study a diamond-relay channel where the source is connected to M relays through orthogonal links and the relays transmit to the destination over a wireless multiple-access channel in the presence of an eavesdropper. The eavesdropper not only observes the relay transmissions through another multiple-access channel, but also observes a certain number of source-relay links. The l...
متن کاملSecure Communications over Wireless Channels
In this work, we present new techniques that leverage the wireless medium in facilitating secure communications in the presence of eavesdroppers. First, we consider the secure transmission of information over an ergodic fading channel with long coherence intervals. The secrecy capacity of such a system is characterized under different assumptions on the available channel state information. We t...
متن کاملExtension of the Coverage Region of Multiple Access Channels by Using a Relay
From practical and theoretical viewpoints, performance analysis of communication systems by using information-theoretic results is important. In this paper, based on our previous work on Multiple Access Channel (MAC) and Multiple Access Relay Channel (MARC), we analyze the impact of a relay on the fundamental wireless communications concept, i.e., coverage region of MARC, as a basic model for u...
متن کاملLink Selection for Secure Cooperative Networks with Buffer-Aided Relaying
This paper investigates the secure communication in a two-hop cooperative wireless network, where a bufferaided relay is utilized to forward data from the source to destination, and a passive eavesdropper attempts to intercept data transmission from both the source and relay. Depending on the availability of instantaneous channel state information of the source, two cases of transmission mechan...
متن کاملWireless Transmission of Big Data Using Novel Secure Algorithm
This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.10145 شماره
صفحات -
تاریخ انتشار 2017